首页> 外文OA文献 >The measurement problem on classical diffusion process: inverse method on stochastic processes
【2h】

The measurement problem on classical diffusion process: inverse method on stochastic processes

机译:经典扩散过程的度量问题:随机过程的逆方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm and secondly to examine the physical meaning of the results. Statistical mechanic considerations show that, passing over a time–distance criterion, measurement becomes uncertain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-entropy at a mesoscopique scale that is in violation to quantum theory about measurement.
机译:在大量的扩散系统中,处理量度以计算材料参数(例如扩散系数)或验证数学模型的准确性。但是,参数确定或模型相关性的精度取决于度量本身的位置。本文的目的是首先针对一维系统,通过逆问题算法分析度量与其位置相关的精度,其次要检验结果的物理意义。统计力学的考虑因素表明,通过时间-距离标准,无论初始条件如何,测量都变得不确定。该标准证明,该混沌模式与中观尺度上的反熵的产生有关,这违反了有关测量的量子理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号